

JAFFNA HINDU COLLEGE

Risk Holiday Self - Education Worksheet - 2020

Grade - 11 | Mathematics

Name/Index No :

Mr.R.S.Mayooran, NDT (Maths)

Answers to all questions. Unit 1,2,3 1. Find the values 33 c. .5⁻² a. d. $(\frac{1}{2})^{-3}$ b. $27^{\frac{2}{3}}$ 2. $2^4 = 16$, Convert to log form. 3. $log_5 125 = 3 =$, Convert to power form. 4. If antilog 0.6998 = 5.004, find the value antilog 2.6998. 5. Convert $\sqrt{68}$ as a simplesurd. 6. Give $4\sqrt{2}$ as an entire surd. 8.. Simplify. $-\frac{\sqrt{20}}{2} - \sqrt{5}$ 7. Simplify. $4\sqrt{63} - 5\sqrt{7}$ 9. Simplify. $\frac{\sqrt[3]{343}x^{\frac{3}{2}}}{\sqrt{x}}$ 10. Simplify. $\sqrt{1\frac{9}{16}}$ 11. Find the values. a. log40 - 21g2 b. $log_2 \frac{1}{8}$ 12. If lg2=x, find lg5 13. antilog 0.4771=3, convert to powerforms.

14. If lg 27=1.431, find lg9

15. If lg 4.385=0.6420, find lg 438.5.

16. If antilog 0.6420=4.385, find antilog 2.6420.

17. If lg2=0.3990, lg3=0.4771, find lg6

18. If $\lg 0.875 = \overline{1}.9420$ find $\frac{1}{2} \lg 0.875$.

19. If lg a=0.8662, lg b= $\overline{1}$. 9710 find *ab*

20. If lg a=0.8662, lgb= $\overline{1}$. 9710, find log $\frac{a}{b}$

Unit 4,5

01)Find the perimeter of a square, If thw area is 1 cm^2 .

02)If the volume of a cube is 1 cm^3 , find its surface area.

- 03)The lengths of diagonals of a rhombus are 12cm and 16cm. Find its perimeter
- 04)The lengths of diagonals of a rhombus are 14cm and 18cm. Find its perimeter.
- 05)The length and breadth of a rectangle are 20cm and 5cm. Find the perimeter of a square which is equal area of given rectangle.
- 06)A sector of central angle 60° has removed from a circle of area 66cm². Find the area of remaining part.
- 07)Find the radius of semicircle of perimeter 87cm.
- 08) The radius and central angle of a sector are 35 cm and 72^{0} . Find the perimeter.

09)Find the radius of a quorter circle, If the perimeter is 25cm.

- 10)The volume and hight of a prism are 150cm^2 and 6 cm. find the area of cross section.
- 11)The cross section of a prism is right angled triangle with shortest side 6cm the area of cross section is 24cm² and length of prism is 20cm.
- 12)Find the length of the sides of cross section.
- 13)Find the surface area of prism.

- 14)A cyclinder of height 10cm obtained from a rectangle sheet of length 22cm and breadth 10cm, find the radius of cylinder.
- 15)Find the curred surfacearea of above cylinder.
- 16)Find the plane surface area.
- 17)Find the volume.
- 18) The dinmeter and hight of a cone are 14cm and 24cm.
- 19)Find the slant height.
- 20)Find the curved surface area.
- 21)Find the area of base.
- 22)Find the volume.
- According to given figure. 23) Find the length of PQ.
- 24) What is the perimeter of semicircle.
- 25)Find the perimeter of triangle.
- 26)Find the perimeter of given figure.
- 27)Calculate the area of given figure.

Unit 06 - Algebraic expressions.

 $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^2$ $(a-b)^2 = a^3 - 3a^2b + 3ab^2 - b^3$

01) Expand the following

I.	$(x+5)^3$	II.	$(x-2)^3$
III.	$(y+8)^3$	IV.	$(a-7)^3$
V.	$(a+10)^3$	VI.	$(x-1)^3$
VII.	$(4+c)^3$	VIII.	$(1-xy)^{3}$
IX.	$(3X+2)^3$	Х.	$(4-3a)^3$

02)Find the values using the expansion of cube of a binomial.

I.	22^{3}	II.	53 ³	III.	15 ³	IV.	103 ³	V.	105 ³
VI.	18 ³	VII.	46 ³	VIII.	27^{3}	IX.	98 ³	Χ.	96 ³

03) Find the value of 5 $[17^3+3 \times 17^2 \times 3 + 3 \times 17 \times 3^2 + 3^3]$ 04) Find the value of $\frac{1}{2}$ [54³ - 3 x 54² x 4 + 3x 54 x 4² - 4³] 05) It $a+b = 5_6$ and ab = 3 find $a^3 + b^3$ 06) It a - b = 10 and ab=4 find $a^3 - b^3$ 07) It $a + \frac{1}{a} = 6$ find $a^3 + \frac{1}{a^3}$

Unit – 07 – Algebraic functions

01)Simplify.

I.	$\frac{2}{x+3} + \frac{1}{x-1}$	II.	$\frac{2}{x^2 - 7x + 12} + \frac{1}{2x - 8}$
III.	$\frac{a}{a-b} + \frac{b}{a^3-b^2}$	IV.	$\frac{a-3}{a^2-3a-4} + \frac{a-1}{a^2-a-2}$
V.	$\frac{2y}{y^2-9} + \frac{1}{a+3}$	VI.	$\frac{12}{x-3} + \frac{5}{3-x}$

02) Simplify $\frac{1}{2} \frac{1}{2} \frac{1}{2}$

I.
$$\frac{x^2 - 4a^2}{ax + a^2} \times \frac{2a}{x^2 - 2ax}$$
III.
$$\frac{12a^4b}{5a} \times \frac{15a^2b^3}{4ab^2}$$
V.
$$\frac{x^4 - 4}{x + 1} \times \frac{x^2 + 2x + 1}{x + 2}$$

VII.
$$\frac{x^2 - 3x + 2}{x^2 - 4x - 12} \div \frac{x^2 - 4}{x^2 - 7x + 6}$$

V.
$$\frac{a-3}{a^2-3a-4} + \frac{a-1}{a^2-a-2}$$

I. $\frac{12}{x-3} + \frac{5}{3-x}$

II. $\frac{2y^2+5y+2}{y^2-9} \times \frac{y^2+3y}{y^2+9y+4}$

IV.
$$\frac{x}{2y+5} \times \frac{4y^2+10y}{3x^2}$$

VI. $20x^5y^2 \div \frac{5x^2y^4}{3x^2}$

VI.
$$20x^3y^2 \div \frac{1}{a}$$

VIII. $\frac{a^2 - 121}{a^2 - 4} \div \frac{a + 11}{a + 2}$

03. KNML and KLPQ are rwo parallelograms. PQMN is a straight line. LK produced to S. prove that the area of triangle PRL and MNS are equal.

- 05. ABCD is a quadrilateral, P is any pointon BC. That Parallel lines, drawn through B to AP and drawn through C to DP meet at X. prove that the area of Triangle XAD is equal to quadrilateral ABCD.
- 06. ABCD is a parallelgram. side DA is produced to X prove that the area of triangle XCD is equal to the area of quadrilatisal BCAX.
- 07. X is any point on the side BC of parallelagram ABCD. AB meets produced DX at P and DC meets produced AX at Q. prove that the area of triangle PXQ is exactly half the area of parellelagram ABCD..

In this figure E, F are points on DC such that CE=EF produced AF and BF meet at G. If AF=FG anf BE=EG prove that the area of quadrilateral BCGF and ABCF are equal.